PARITY RESULTS FOR BROKEN k–DIAMOND PARTITIONS AND (2k + 1)–CORES

نویسندگان

  • SILVIU RADU
  • JAMES A. SELLERS
چکیده

In this paper we prove several new parity results for broken k-diamond partitions introduced in 2007 by Andrews and Paule. In the process, we also prove numerous congruence properties for (2k+1)-core partitions. The proof technique involves a general lemma on congruences which is based on modular forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combinatorial Proof of a Relationship Between Maximal $(2k-1, 2k+1)$-Cores and $(2k-1, 2k, 2k+1)$-Cores

Integer partitions which are simultaneously t–cores for distinct values of t have attracted significant interest in recent years. When s and t are relatively prime, Olsson and Stanton have determined the size of the maximal (s, t)-core κs,t. When k > 2, a conjecture of Amdeberhan on the maximal (2k − 1, 2k, 2k + 1)-core κ2k−1,2k,2k+1 has also recently been verified by numerous authors. In this ...

متن کامل

On the Number of Graphical Forest Partitions

A graphical partition of the even integer n is a partition of n where each part of the partition is the degree of a vertex in a simple graph and the degree sum of the graph is n. In this note, we consider the problem of enumerating a subset of these partitions, known as graphical forest partitions, graphical partitions whose parts are the degrees of the vertices of forests (disjoint unions of t...

متن کامل

RSK Insertion for Set Partitions and Diagram Algebras

We give combinatorial proofs of two identities from the representation theory of the partition algebra CAk(n), n ≥ 2k. The first is nk = ∑ λ f mk , where the sum is over partitions λ of n, fλ is the number of standard tableaux of shape λ, and mk is the number of “vacillating tableaux” of shape λ and length 2k. Our proof uses a combination of Robinson-Schensted-Knuth insertion and jeu de taquin....

متن کامل

Partitions Excluding Specific Polygonal Numbers As Parts

A partition λ of the nonnegative integer n is a sequence of nonnegative integers λ1 ≥ λ2 ≥ · · · ≥ λr with λ1 + λ2 + · · · + λr = n. Each value λi, 1 ≤ i ≤ r, is called a part of the partition. In this note, we consider partitions of n with parts related to k-gonal numbers for some fixed integer k ≥ 3. Various works have appeared involving partitions into polygonal parts. For example, M. D. Hir...

متن کامل

Generalizations of Eulefts Recurrence Formula for Partitions

where k is a positive integer and the left-hand side of (1) is the generating function for the number of partitions into parts & 0, ±k (mod Ik + 1), while the left-hand side of (2) is the generating function for the number of partitions into parts ^ 0, +1 (mod 2k + 1). As Aider remarks, when/r = 2, identities (Hand (2) reduce to the Rogers-Ramanujan identities for which £2,/?(x)=x . Alder showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009